
Formal Analysis of a Space Craft Controller using SPIN

Klaus Havelund
�
, Mike Lowry and John Penix

NASA Ames Research Center
Moffett Field, California, USA

Email:
�
havelund,lowry,jpenix � @ptolemy.arc.nasa.gov

URL: http://ase.arc.nasa.gov

Abstract

This paper documents an application of the finite state
model checker SPIN to formally analyze a multi-threaded
plan execution module. The plan execution module is one
component of NASA’s New Millennium Remote Agent, an
artificial intelligence based spacecraft control system ar-
chitecture which launched in October of 1998 as part of the
DEEP SPACE 1 mission. The bottom layer of the plan ex-
ecution module architecture is a domain specific language,
named ESL (Executive Support Language), implemented as
an extension to multi-threaded COMMON LISP. ESL sup-
ports the construction of reactive control mechanisms for
autonomous robots and space crafts. For this case study, we
translated the ESL services for managing interacting paral-
lel goal-and-event driven processes into the PROMELA in-
put language of SPIN. A total of � previously undiscovered
concurrency errors were identified within the implementa-
tion of ESL. According to the Remote Agent programming
team the effort has had a major impact, locating errors that
would not have been located otherwise and, in one case,
identifying a major design flaw. In fact, in a different part
of the system, a concurrency bug identical to one discov-
ered by this study escaped testing and caused a deadlock
during an in-flight experiment 96 million kilometers from
earth. The work additionally motivated the introduction of
procedural abstraction in terms of inline procedures into
SPIN.

Index Terms – Program verification, concurrent pro-
grams, model checking, temporal logic, program abstrac-
tion, model extraction, spacecraft software.

�
Recom Technologies

1 Introduction

SPIN [9] is a verification system that supports the design
and verification of finite state asynchronous process sys-
tems. Programs are formulated in the PROMELA language,
which is quite similar to an ordinary programming lan-
guage, except for certain non-deterministic specification-
oriented constructs. Processes communicate either via
shared variables or via message passing through buffered
channels. Properties to be verified are stated in the linear
temporal logic LTL. The SPIN model checker automatically
determines whether a program satisfies a property and, if
the property does not hold, generates an error trace.

This paper documents an application of SPIN to for-
mally analyze a software based multi–threaded plan ex-
ecution module programmed in LISP, one component of
NASA’s Remote Agent (RA) [11], an artificial intelligence
based spacecraft control system architecture. The Remote
Agent also contains a planning module, which generates
plans based on goals received from earth, and sends these
plans to the plan execution module. A third module, the
mode identification and recovery module, constantly moni-
tors the state of the space craft and tries to recover in case of
anomalies. The Remote Agent was one of 12 technologies
tested on the DEEP-SPACE 1 space craft, launched Octo-
ber 1998. The Remote Agent itself was tested during May
1999, demonstrating the complete control of a space craft
by artificial intelligence based software for the first time in
NASA’s history.

The bottom layer of the plan execution module is a
domain specific language, named ESL (Executive Support
Language), implemented as an extension to multi-threaded
COMMON LISP. ESL supports the construction of reac-
tive control mechanisms for autonomous robots and space
crafts. It offers advanced control constructs for managing
interacting parallel goal and event driven processes. Our

main focus was to analyze the ESL primitives used in the
plan execution module. Hence, we created a small example
plan execution model – with a fixed number of tasks all us-
ing constructs of the ESL, and then observed whether this
model satisfied various desired properties.

The effort consisted of hand translating parts of the LISP

code for ESL into a model in the PROMELA language of
SPIN, and then verifying two properties formulated by the
Remote Agent programmers. These properties were formu-
lated after the PROMELA model had been created, hence
they had no influence on the model design.

Both properties turned out to be broken, and a total of
� flawed code fragments were identified, one breaking the
first property, three breaking the second property, and one
being a minor efficiency issue. This is regarded as a very
successful result. According to the RA programming team,
the effort has had a major impact, locating errors that they
believe would not have been located otherwise and iden-
tifying a major design flaw. As an interresting aftermath,
one of the five error patterns identified was mistakenly re-
introduced in a different part of the plan execution module
(not examined using SPIN), and caused a deadlock during
flight in space. Because of the deadlock, thrusting did not
turn off when required, and the space craft was unable to
recover by itself. The craft was put in stand-by mode by
the ground crew until a repair was made. The source of the
error was identified as one of the flawed code patterns dis-
covered by SPIN, and described in this paper. The repair
consisted of introducing a critical section around the flawed
code, the same solution we suggested based on the error
trace generated by SPIN.

Section 2 contains a short introduction to SPIN and
its modeling language PROMELA. Section 3 contains an
informal description of the Remote Agent plan execu-
tion module, while section 4 describes its formalization in
PROMELA. Section 5 presents the verification results, first
stating the properties to be verified, and then describing the
errors found by applying the model checker to the model
and these properties. Each error is described by an error
trace leading from the initial system state to a state that
breaks the particular property being verified. Finally, sec-
tion 6 contains a discussion, including the RA programming
team’s evaluation of the project.

2 Introduction to SPIN

This section gives a short presentation of the SPIN sys-
tem [9] with special focus on the PROMELA language con-
structs used in this paper. SPIN is a tool for analyzing the
correctness of finite state concurrent systems with respect

to formally stated properties. A particular concurrent sys-
tem is formalized in the C-inspired PROMELA program-
ming language, and properties to be verified are formalized
as assertions in the program or as formulae in the tempo-
ral logic LTL (Linear Temporal Logic). The SPIN tool pro-
vides a so-called model checker, which automatically ex-
amines all program behaviors in order to decide whether a
PROMELA program satisfies the stated properties. The SPIN

tool also provides a simulator, with which PROMELA pro-
grams may be executed in a step-by-step manner. This tool
can be used to re-run error traces generated by the model
checker for properties that are not satisfied.

PROMELA can be used to formalize any concurrent sys-
tem involving software, hardware, and physical objects. As
an example, the physical world that surrounds a space craft,
and which can influence its behavior, can be formulated as
a PROMELA process, which can spontaneously execute and
thereby change the system state. A PROMELA program can
be said to denote a set of reachable states, called the state
space, consisting of those states that can be reached from
the initial state by executing the program. In order to al-
low for automatic verification, this state space has to be fi-
nite and of tractable size. The PROMELA programmer must
make sure this is the case by abstracting from real world
complexity, if necessary. Note, however, that even in the
case where SPIN is not able to prove a property correct for
all behaviors, it may still be able to locate errors if they
show up early during the state exploration. Typically SPIN

locates errors much faster than it proves correctness.

Promela Programs An executing PROMELA program
consists of a collection of processes that communicate via
buffered channels and shared global variables. At the top
level, a program consists of a sequence of declarations of
typed global variables and channels together with process
declarations. There is also an initialization section consti-
tuting the main program in which all processes are started.
A process is declared with the syntax:

proctype name(arguments) � body �

where the body is a sequence of local variable and channel
declarations, and statements. Processes can be parameter-
ized with values such as integers as well as with channels.
The initialization section is regarded as a special unparam-
eterized process declaration of the form:

init � body �

A process P is started with the statement: run P(...).
Processes can be started dynamically at any point where a
statement is allowed, within process bodies as well as in the
init section.

2

PROMELA relies on macro definitions to introduce
names for chunks of PROMELA text. One can either use
the macro concept directly, for example when defining con-
stants:

#define MAX 5

or one can define “procedures” using inline definitions:

inline f(x){c = c + x;x = x + 1}

The body of an inline is pasted into the body of a proctype
at each point of invocation.

Variable Declarations Variables are declared using C-
like syntax: a type followed by a name and an optional ini-
tial value, as for example in:

int x = 1;

Among the basic types are: bool (1 bit, a different name is
bit), byte (8 bits), and int (32 bits). The basic datatypes
include the standard literals and operators including: ==
(equal), != (not equal), ! (negation), & (and), | (or), and
&& and || for the conditional versions of the latter two.

PROMELA has two kinds of composite types: arrays and
records. Arrays must be given a size at declaration time, as
in:

int a[5];

where an array a of integers of size � is declared. The el-
ements of the array are accessed in the expected way, as in
the assignment statement: a[3] = a[3] + 1. Record
types are defined using the typedef keyword, as in the
following definition of a record type R containing a boolean
flag and an integer array of size 4:

typedef R{bool flag;int elements[4]}

A variable r can now be defined using the C-like notation:
R r. The elements of a record are accessed using dot-
notation, as in r.elements[2] = 1.

We shall use some notation for type abbreviations
and enumerated types that is not supported directly by
PROMELA, but which makes the presentation easier to fol-
low. This notation is short for certain macro definitions as
indicated here:

Notation: Is short for:

type Num = int #define Num int
type Ev = � A,B � #define Ev bit

#define A 0
#define B 1

Channel Declarations A channel is a “first in first out”
(FIFO) buffer capable of containing a specified maximal
number of messages of a given type. Processes can com-
municate with each other by writing messages to and read-
ing messages from such buffers. The following declaration
introduces a channel named c, capable of holding up to ���
messages, each of type int.

chan c = [10] of {int};

In the scope of this declaration, one process can for ex-
ample send the value 5 to this channel by executing the
statement c!5, while another process can receive this value
in the variable x by executing c?x. If a channel is full
(contains ��� messages in the above example), then a send-
statement will block. Similarly, if the channel is empty, a
read-statement will block. If the size of the channel is de-
fined as � , communication is by rendez-vous; the sending
process blocks until a receiving process reads the value, and
vice versa.

In addition to the channel reading statement c?x we
shall mention a collection of more esoteric channel reading
statements that we use. The statement c?<x> has the same
effect as c?x except that the value stored in x is not re-
moved from the channel. The statement c??k removes the
oldest occurrence of the constant k from the channel, and
blocks if there is no such constant. The statement c??[k]
evaluates to �����	� if k is in the channel, and
	������ otherwise.
It does not block. Instead of k one can write eval(exp)
for some expression exp to test whether the value of the
expression occurs in the channel. Two operations are pro-
vided with which the emptiness of a channel can be ex-
amined: empty(c) returns ������� if the channel is empty;
nempty(c) returns �����	� if the channel is non-empty.

Statements Basic statements include assignment state-
ments, such as x = x + 1 or x++, and channel commu-
nication statements. The skip statement is a no-operation
statement.

A statement can either be executable or blocked in a par-
ticular state. Two kinds of statements can block: channel
communications as described above, and boolean expres-
sions occurring as statements. Since a boolean expression
is side-effect free and cannot communicate, its effect as a
statement is equivalent to skip, except that it blocks if it
evaluates to � (
	�������). Hence, boolean expressions can be
used to block a process if a certain condition on the state
variables is not satisfied.

Statements can be composed sequentially, as in s1;s2,
and can be grouped together using curly brackets: � ... � .
Note that curly brackets do not introduce a local scope for

3

variables declared within them. A composed statement is
executable if its first statement is executable.

The general form of a PROMELA if-statement is a se-
quence of statements, called options, surrounded by the
keywords if ... fi, and each preceded by a double-
colon:

if :: s1 :: s2 ... :: sn fi

Only one of the statements is executed, and only one where
the first sub-statement – called the guard – is executable.
When several statements have executable guards, the choice
of the statement is non-deterministic. When no guard is ex-
ecutable, the if–statement blocks. The special else state-
ment can be used at most once as the first sub-statement of
an option, and it will become executable if all other options
are non-executable. As an example, the following statement
represents a traditional if-statement, using an arrow (->) as
another way of writing sequential composition:

if
:: x == 0 -> x = 10
:: else -> x--
fi

Similar in syntax to an if-statement, a do–statement:

do :: s1 :: s2 ... :: sn od

behaves like the if-statement, except that it is executed re-
peatedly until the special break statement is encountered.

Interrupts are provided by the unless-statement, which
has the form:

s1 unless s2

The statement s1 is executed to its end unless statement
s2 becomes executable, in which case s1 is aborted and
s2 continues executing. If s2 does not become executable
before the last sub-statement in s1, it will not be executed.

When two processes execute in parallel, their statements
may execute interleaved in arbitrary order. In order to re-
duce this number of interleavings, statements within a pro-
cess may be grouped together to execute in one indivisible
step without interleaved execution from other processes as
follows:

atomic � s1; s2;...; sn �
The purpose may be to enforce a correct behavior of the pro-
gram, or alternatively to reduce the complexity of the sys-
tem to obtain a smaller state space. The statements execute
to the end unless one of them blocks, in which case con-
trol is transferred to another process. Control may continue
from that point within the atomic construct if the statement
becomes executable at a later point. The body of a process
activated by a run-statement within an atomic construct is
considered to be outside the scope of the atomic statement.

Specifying Properties SPIN provides two ways of defin-
ing properties, either by assertions placed as statements in
the code, or by linear temporal logic (LTL) formulae defined
separately from the code. The assert statement has the form:

assert(bool expr)

It is always executable, and behaves as skip if the boolean
valued expression is �����	� . If the expression evaluates to

	��� ��� , SPIN will produce an error trace illustrating the exe-
cution path from the initial state to the state that violates the
assertion.

An LTL formula states properties about the execution
traces of the PROMELA program, where a trace is a se-
quence of states, each being an assignment of values to vari-
ables and channels. In general, a program denotes a set of
execution traces, one for each possible interleaving of the
processes in the program. Given a trace and some state in
that trace, we shall define the suffix trace from that state to
be the remaining part of the trace starting in that state.

Two kinds of temporal formulae are used in this paper:
[]P , or always P, and <>P, or eventually P, where P is
itself an LTL formula, the atomic case being a state predi-
cate. A given execution trace satisfies the formula []P, if
P is �����	� in every state of that trace – strictly speaking, if
all suffix traces of the trace satisfy P. Likewise, a given ex-
ecution trace satisfies the formula <>P, if in some state of
the trace, P is �����	� for the suffix trace starting in that state.
These formulae can be nested. At the top–level, a program
satisfies a formula if all the program’s execution traces sat-
isfy the formula. As an example, the formula:

[](request -> <>response)

states that whenever a request occurs then eventually a re-
sponse occurs. Here request and response must be
macro names, each representing a predicate on the state
variables or a program control location.

LTL formulae are translated into so-called never-claims
in Promela, which are equivalent to Büchi Automata.
Never-claims can be written directly, providing a more gen-
eral specification language, although less user friendly.

3 The Remote Agent Executive

In this section, we give an informal description of the
RA Executive. After an overview follows a description of
the data types and the processes of the system.

4

3.1 Overview

The RA Executive, Fig. 1, is designed to support execu-
tion of software controlled tasks on board the space craft.
A task may be, for example, to run and survey a camera.
A task often requires that specific properties hold during its
execution. For example, the camera–surveying task may re-
quire the camera to be turned on throughout task execution.
When a task is started (dynamically), it first tries to achieve
the properties on which it depends, where after it starts per-
forming its main function. The example camera–surveying
task will try to turn on the camera before running the cam-
era. Properties may, however, be unexpectedly broken (e.g.,
the camera may turn off) and tasks depending on such bro-
ken properties must then be informed about this, after which
they can request to get the properties restored. In order to
simplify the later modeling in PROMELA we shall, however,
assume that the tasks in this case are aborted, hence com-
pletely terminated.

A

B

C

Z

10

ON

0

OFF
.

.

.

.

.

Interrupt
Task

Maintain Properties
Daemon

Subscribe

Update

Database

Property LocksTasks

Spacecraft

Commands
Control

Monitors
Achieve
Property

Event
Lock

Event

Figure 1. Remote Agent Executive

To simplify the programming of the individual tasks, the
RA Executive models the spacecraft devices in terms of the
various properties that they may have, and stores these in
a database. The executive provides mechanisms for both
achieving and maintaining these properties, and uses locks
to prevent tasks with incompatible property requests from
executing simultaneously. Two properties are incompati-
ble if they require different observed values of the same
equipment sensor. Executing concurrently with the tasks is
a property maintenance daemon that monitors the database
representing the status of the spacecraft. If there is an in-
consistency between the database and the locks – meaning
that a locked property no longer holds in the database – the
daemon suspends all tasks subscribed to the property while

some action is taken to re-achieve the property. The dae-
mon remains inactive unless certain events occur, such as a
change of the database or lock table.

The Executive permits various achieve methods to be as-
sociated with a property. When a task makes a request for
a property to be achieved, the Executive calls the achieve
method that is appropriate for the current situation. This
aspect was not subjected to verification; the tasks were re-
garded as being able to achieve properties directly them-
selves.

3.2 Data Types

Property Database

The state of the spacecraft at any particular point can be
considered as an assignment of values to a fixed set of vari-
ables, each corresponding to a component sensor on board
the space craft. As an example, the variable CAMERA may
have one of the values ON or OFF. A particular assignment
of a value to a variable is called a property, where the vari-
able is called the property name and the value is called the
property value. Hence, a property � is a pairing of a prop-
erty name ��� and a property value ��� : �����	����
����� . The
fact that the camera is on can be written as the property:
(CAMERA,ON).

The actual state of the space craft is constantly moni-
tored, and stored in a database. We shall assume that, at
any moment, the database will contain a set of monitored
properties that are consistent with the actual state of the
spacecraft.

The Property Lock Table

As mentioned, a task can lock a property to prevent other
tasks requiring incompatible properties from executing si-
multaneously. Two properties �������	����
������� and �����
������
������� are incompatible, if they have the same property
name (���) but different property values (��� �������� �). The
property lock table contains those properties that have been
locked. In addition, it contains information for each prop-
erty regarding which tasks subscribe to it and whether or
not it has been achieved. The property lock table can be
regarded as a set of locks, where a lock is a triple of the
form: ����
 ��� � �"! ��#$� ��� �
 �%!�&�# � � ��' . The figure only shows
the properties of the lock table.

An inconsistency occurs between the database and the
locks if the lock table contains a lock � �(�	��
 � � �
 �����	�
with a property � that has been achieved (achieved field is
�������) but is not in the database. If such an inconsistency oc-
curs, the daemon suspends all tasks subscribed to the prop-
erty.

5

Events

Whenever the lock table or the database is changed, the
daemon must be awakened so that it can examine the new
system state. In general, application tasks may also wait
for such events to happen. For this purpose, event ob-
jects are introduced for each kind of event in the system:
LOCK EVENT (representing a change of the lock table) and
MEMORY EVENT (representing a change of the database).
Any process (task or daemon) wanting to wait for an event
calls a wait procedure, which adds the process to a corre-
sponding list of waiting tasks. Whenever a change happens
to the lock table or the database, the corresponding event is
signaled, via a signal procedure, and the waiting processes
are removed from the list and restarted.

3.3 Processes

Tasks

Before a task executes its main job, it will try to achieve the
properties that the execution depends on. The first step is
to lock the properties in the lock table. Locking a property
will only succeed if it is compatible with the existing locks;
otherwise, the task is aborted. If there are no conflicting
locks and the lock does not already exist, the task will cre-
ate it. Note that some other task may have already locked
the same property, which is not defined as a conflict. If it
succeeds, the task also puts itself into the subscribers list of
the lock, indicating that the task depends on this property.

The creator of a lock is called the owner, in contrast to
tasks that subscribe later to the same property. The owner
is responsible for achieving the property, resulting in the
database being updated. Upon successful achievement, the
achieved-field in the lock is set to �����	� . If the achieve-
ment fails, the task is aborted. Other tasks that subscribe
later than the owner must wait for the owner to achieve
the property. This is done by simply waiting for a MEM-
ORY EVENT which indicates the property was successfully
achieved. Hence, the wait procedure takes the property to
be waited for as argument in addition to the event waited
for.

Once a task has first locked and then achieved its re-
quired properties, it executes its main job, relying on the
properties to be maintained throughout job execution.

Before a task terminates, it releases its locks. That is, it
removes itself from the subscribers list, and if the list then
becomes empty (no other subscribers), it removes the lock
completely. In case there are other subscribers, the lock
must of course be maintained.

The “Maintain Properties” Daemon

The system contains a daemon to guarantee that achieved
properties are maintained while subscribing tasks are exe-
cuting. An achieved property in the property lock table is
said to be maintained as long as it is also contained in the
database (and hence is a property of the space craft).

The daemon is normally in “sleep mode”, waiting for
an event that modifies the database (MEMORY EVENT) or
the property lock table (LOCK EVENT). Sleep mode is im-
plemented by letting the daemon wait in the corresponding
event lists. Once started, the daemon examines all locks in
the property lock table. For each lock where the achieved
field is �����	� , it checks whether the property is contained
in the database. If the property is not in the database, all
tasks in the lock’s subscribers list are aborted and a recov-
ery procedure is initiated to re-achieve the property. After
examining all locks, the daemon goes into sleep mode again
by waiting for another MEMORY EVENT or LOCK EVENT.

4 Formalization in PROMELA

Our discussion of the the PROMELA model of the RA
Executive focuses on operations of the lock table. The ba-
sic data type of LISP is the list, so we begin our exposition
by outlining how we modeled lists in PROMELA. The pre-
sentation is then divided into the following topics: the state
space (constants, types and global variables), operations on
events, the tasks, the daemon, the environment that may in-
troduce violations, and initialization of the system state.

The LISP program that was modeled in PROMELA is
highly structured using procedural abstraction, and hence
is divided into a collection of relatively small-sized proce-
dures and functions. We tried to maintain the same level
of structuring in the PROMELA code using the inline and
macro concepts. All communication between processes
takes place via shared variables, since this is how the LISP

implementation works. PROMELA channels are only used
to represent lists, as described in the next section.

As stated above, the PROMELA model focuses on oper-
ations on the lock table. Hence, it is an abstraction of the
LISP program, omitting details not regarded as important
for the lock table operations. The LISP program is approx-
imately 3000 lines of code while the PROMELA model is
500 lines of code. Furthermore, the model only deals with a
limited number of tasks and properties in order to limit the
search space the SPIN model checker has to explore. Most
abstractions are made in an informal manner without any
formal proofs showing that bugs are maintained. Hence, in
the abstraction phase we may have left out errors in the LISP

code. However, the errors in the model that we are about to
describe were also errors in the LISP code.

6

4.1 Modeling Lists

The fundamental data type in LISP is the list. Lists are
used heavily in the program, and hence we tried to find a
convenient way to represent them in PROMELA. One solu-
tion is to define an abstract data type implementing lists as
arrays and defining the classical operations like add an el-
ement, remove an element, etc. as macros (or inlines in the
newest version of SPIN). We did not take this approach, due
to an early attempt to avoid macros since they are not well
integrated into SPIN; for example, they do not support local
variables well.

As an experiment (rather than a choice of best solution)
we decided early to model lists as channels. Channels have
some of the same properties as lists: one can easily add
elements, and remove them (following the FIFO principle
though). In addition, channels make some operations that
we need easy. That is, questions like “does list � contain el-
ement � ?”, and operations like “remove element � from the
list � , no matter where it is in the list”. We briefly describe
the technique. First, with the macro definition:

#define list chan

we define a new symbol list to stand for the symbol
chan, the PROMELA keyword for declaring channels. With
this definition we can declare a “list variable” as follows:

list numbers = [5] of
�
int �

The “list variable” numbers is intended to contain lists
with a length smaller than or equal to � . The signatures for a
number of operations defined upon lists are shown in Fig. 2.

inline append(e,l) � ... � ;
inline remove(e,l) � ... � ;
inline copy(l1,l2) � ... � ;
inline next(l,x) � ... � ;

Figure 2. Signatures for list operations

Informally, the procedures and functions do the following:
The procedure append appends an element to the front of
a list; remove removes a particular element , assuming it
is there; copy copies one list (l1) into another (l2); next
removes the first element inserted and stores it in the result
variable x, assuming the list is not empty

�
. Suppose we

have the following declarations:
�
Somewhat more formally, the procedures perform the following chan-

nel operations: append(e,l) does l!e; remove(e,l) does l??e;
copy(l1,l2) does combinations of l1?x and l2!x; and next(l,x)
does l?x. Note however, that some of these PROMELA channel operators
do not allow variables as arguments, and hence the implementations of
these procedures are sometimes more elaborate.

int x;
list numbers = [5] of

�
int � ;

list temp = [5] of
�
int � ;

Then Fig. 3 illustrates the use of the list operations, and
their effect on the variables x, numbers and temp (only
changes are shown). All statements execute, with boolean
valued expressions evaluating to �����	� .

x numbers temp

0 [] []
append(1,numbers); [1]
append(2,numbers); [2,1]
append(3,numbers); [3,2,1]

next(numbers,x) 1 [3,2]
x == 1;
copy(numbers, temp); [3,2]
remove(3,temp); [2]
next(temp,x); 2 []
x == 2

Figure 3. Examples of list operations

4.2 The State Space

Three constants define the bounds of the system, Fig. 4.
That is, they determine the size of the state space, an impor-
tant factor for obtaining efficient model checking.

#define NO_PROPS 2
#define NO_EVENTS 2
#define NO_TASKS 3

Figure 4. The constants

The constant NO PROPS defines the number of property
names. This constant determines the size of both the prop-
erty lock table and the database, because they each have an
entry for each property name. We chose to work with two
property names: � and � . The constant NO EVENTS defines
the number of events, in our case � : MEMORY EVENT and
LOCK EVENT as will be formalized below. Finally, the con-
stant NO TASKS defines the number of tasks in the system,
including the daemon. This number is set to � correspond-
ing to a daemon and two application tasks.

The constants NO PROPS and NO TASKS are chosen
small in order to obtain a small state space for the model
checker to explore. This is an example of an abstraction
that is not formally justified. Hence, some errors in the
LISP program may be left out. On the other hand, any errors

7

found in this reduced system will also be errors in the real
system, and since our goal is to identify errors rather than to
prove correctness, the abstraction is regarded as acceptable.

A number of types were defined to model the data struc-
tures in the system, Fig. 5. The type EventId is an enu-
merated type defining the two forms of events. TaskId
is the type of task identifiers. Note, that there are � tasks
(��� �����	�
� � �): the daemon, which is given identity � and
two application tasks, given identity � and � respectively.

type
EventId = � MEMORY_EVENT,LOCK_EVENT � ;
TaskId = byte;

type
Property_Name = byte;
Property_Value = byte;

typedef Property �
Property_Name name;
Property_Value value � ;

typedef Lock �
Property_Value value;
list sub = [NO_TASKS] of � TaskId � ;
bool achieved � ;

typedef Event �
byte count;
list pending_tasks = [NO_TASKS] of � TaskId � � ;

typedef Task �
State state;
list waiting_for = [NO_EVENTS] of � EventId � ;
Property prop � ;

type
State = � SUSPENDED,RUNNING,

ABORTED,TERMINATED � ;

Figure 5. Types

The type Property Name contains the property
names, of which there are two (��� �������� � �): � and � .
Correspondingly, the type Property Value contains the
property values. There is no constant defining the maximal
number of property values, since this bound is not needed
for declaring the state space. Finally, a Property is de-
fined as a record containing two entries: a property name
and a property value.

The property lock table is modeled as a mapping from
property names to locks in the type Lock. Hence each
property name is mapped to a record containing the follow-
ing three fields: the property value it is supposed to have;
the list of tasks subscribing to the lock; and a flag indicating
whether it has been achieved or not.

Each event (MEMORY EVENT and LOCK EVENT) is as-
sociated with a status record of the type Event containing
two fields: a counter that is increased each time the event
is signaled and a list of pending tasks waiting for the event.
Each task is associated with a status record of the typeTask
containing the following three fields: the state of the task
(SUSPENDED, RUNNING, ABORTED, or TERMINATED);
a list of the events it is waiting for, in case the state is
SUSPENDED; and a property called prop. This property
represents a condition that must be satisfied before the task
can be re-started by an event signal. It is relevant when the
task is not the owner of a lock and some other task is sup-
posed to achieve the property. In this case, the task must
wait for this property to be achieved, and so the property
becomes the prop condition.

The state space of the model is declared in Fig. 6. The
database is represented by the variable db, which is an array
mapping property names into property values. The property
lock table is represented by the variable locks, which is an
array mapping property names into locks. In the LISP code,
the property lock table is represented as a list of (property
name, lock) pairs, and the existence of a lock � on a property
name ��� is represented by the fact that the pair �	����
 � is in
the list. An array is used to model this list, instead of a
channel as described in section 4.1, because the elements
are composite record values.

Since we model the property lock table as a mapping
from property names to locks, the property name ��� will
always have an entry, and we must model the non-existence
of a lock differently. We have reserved the property value �
for those locks that are “non-existent”. That is, if a property
name maps to a lock with property value � , it means the
property is not locked (corresponding to not being in the
LISP list). The constant:

#define undef_value 0

is introduced to denote this undefined property value.

Two variables are introduced to store the status of the
events and the tasks. The variable Ev maps events to event
status records, and similarly, the variable active tasks
maps task identifiers to task status records.

Property_Value db[NO_PROPS];
Lock locks[NO_PROPS];
Event Ev[NO_EVENTS];
Task active_tasks[NO_TASKS];

Figure 6. Variables

8

4.3 Events

Two operations are defined on events, corresponding to
waiting for an event and signaling an event. These opera-
tions are represented by the procedureswait for event,
Fig. 7, and signal event, Fig. 8.

inline wait_for_event(this,a,p) �
atomic �

append(this,Ev[a].pending_tasks);
append(a,active_tasks[this].waiting_for);
active_tasks[this].prop.name = p.name;
active_tasks[this].prop.value = p.value;
active_tasks[this].state = SUSPENDED;
active_tasks[this].state == RUNNING

�
�

Figure 7. wait for event

inline signal_event(a) �
atomic �
TaskId t;
EventId e;
list pending = [NO_EVENTS] of � EventId � ;
Ev[a].count = Ev[a].count + 1;
copy(Ev[a].pending_tasks,pending);
do
:: next(pending,t) ->

if
:: (active_tasks[t].prop.value ==

undef_value
||
db_query(active_tasks[t].prop))
->
do
:: active_tasks[t].waiting_for?e

-> remove(t,Ev[e].pending_tasks)
:: empty(active_tasks[t].waiting_for)

-> break
od;
active_tasks[t].state = RUNNING

:: else
fi

:: empty(pending) -> break
od

�
�

Figure 8. signal event

The procedure wait for event takes three parame-
ters. The parameter this (type TaskId) identifies the
task that calls the procedure, that is, the task that wants
to wait for an event to happen; the parameter a (type
EventId) identifies the event to be waited for; and the
parameter p (type Property) represents a property that

must be satisfied in addition to the occurrence of the event
before the calling task can be re-started. For example, when
a task wants to wait for some other task to achieve the
property (CAMERA,ON), it calls the procedure as follows:
wait for event(this,MEMORY EVENT,CAMERA ON).
This property is referred to as the restart condition.

The body of wait for event is executed atomically
because it is within a critical section in the LISP code. First,
the calling task is appended to the event’s list of pending
tasks (those waiting for the event to occur). Second, the
event is appended to the task’s list of events it is waiting for.
Third, the restart condition p is stored in the task’s status
record in the prop field. Note that since PROMELA does
not allow for assignments to record variables, each field has
to be updated individually. Finally, the task is suspended
by updating the task’s state field. The waiting itself is
realized by the statement:

active_tasks[this].state == RUNNING

This is a boolean valued expression (without side effects)
which, according to the semantics of PROMELA, will only
execute and terminate if its value is �����	� . Hence, the
calling task will wait until the expression becomes ������� ,
the intention being that the signal event procedure
will at some later point assign the value RUNNING to
active tasks[this].state.

A procedure wait for events also exists which is
very similar to wait for event, except that it takes sev-
eral event parameters, and waits for any one of these to hap-
pen.

The procedure signal event takes a single parame-
ter identifying the event a (type EventId) to be signaled,
and restarts all tasks waiting for that event, if their restart
condition is satisfied. Three local variables are declared, t,
e and pending, where the latter is intended to hold the
list of tasks waiting for the event. First, the event counter
is incremented. This counter is used by the daemon to
determine whether a new signal has arrived, see Fig. 22.
Then the event’s list of pending tasks is copied into the lo-
cal pending variable, which is then examined in a loop,
task by task. Each task is extracted into the local variable t
by the statement next(pending,t).

At this point, each waiting task t is restarted if the
task’s restart condition prop is satisfied. The condition
is satisfied, if either its property value is undefined (equals
undef value), or if it is in the database. The latter is the
case if the expression

db_query(active_tasks[t].prop)

9

#define db_query(p)
db[p.name] == p.value

Figure 9. db query

evaluates to �����	� . The function db query, Fig. 9, takes
as parameter a property p (type Property), and returns
�����	� if the property name denotes the property value in the
database.

In the case where the restart condition is satisfied, an
inner loop is entered in which all events in the task’s
waiting for list are examined and, for each such event,
the task is removed from the event’s list of pending tasks. In
the LISP code, the body of the signal event procedure
is embedded within a critical section. A direct modeling of
this in PROMELA results in an atomic construct around
the body.

4.4 The Tasks

Tasks are modeled as PROMELA processes. A collection
of support procedures were used to define tasks. The pro-
cedure fail if incompatible property, Fig. 10,
is called by a task just before it tries to lock a property, to
check if the lock conflicts with existing locks. The proce-
dure takes as parameter the property p (type Property) to
be locked, and returns ������� if some other task has already
locked the property name, but with a different, and there-
fore incompatible, property value. The result of this test is
stored in the return variable err, which is used to direct
control in the calling context.

inline fail_if_incompatible_property(p,err) �
if
:: (locks[p.name].value != undef_value &

locks[p.name].value != p.value) ->
err = 1

:: else
fi

�

Figure 10. fail if incompatible property

The procedure lock property, Fig. 11, is called by
a task to lock a property. The procedure takes as parame-
ters the identity, this (type TaskId), of the calling task;
and the property, p (type Property), to be locked. The
outcome of the operation is written into the result variable
err.

inline lock_property(this,p,err) �
atomic �

fail_if_incompatible_property(p,err);
append(this,locks[p.name].sub);
if
:: locks[p.name].value == undef_value ->

locks[p.name].value = p.value;
locks[p.name].achieved = db_query(p)

:: else
fi;
signal_event(LOCK_EVENT)

�
�

Figure 11. lock property

The procedure first checks whether the request is com-
patible with the already existing locks. That is, there must
not be a lock with the same property name, but with a dif-
ferent property value. The result of this check is written into
the err variable. In the calling context, Fig. 17, we shall
later see the effect of this result variable becoming ������� : an
abort will occur and terminate the task. The task is then ap-
pended to the list of subscribers to the property. Then, if the
property is not already in the lock table, it is “inserted”: the
property name of p is set to denote the property value of p,
and the achieved field is set to reflect whether the prop-
erty already holds in the database via db query. Finally,
the LOCK EVENT is signaled to restart the daemon in case
it is waiting.

After locking the property, if the task is the owner, it
must achieve the property. A task is the owner of a prop-
erty if it was the first to subscribe to the property, and hence
is the first element in the property’s subscriber list in the
lock table. The procedure find owner, Fig. 12, deter-
mines the owner of the property p. The brackets <...>
are special PROMELA notation which prevents the owner
from being removed from the list.

inline find_owner(p,owner) �
locks[p.name].sub?<owner>

�

Figure 12. find owner

When a task wants to achieve a property, it calls the pro-
cedure achieve lock property, Fig. 13. The task
can only achieve the property if it is the owner. Hence, it
first determines which task is the owner of the property p.
In case the owner equals the calling task, the property is
achieved by a call of the procedure achieve (defined in
Fig. 14) and the achieved field is set to �����	� . On the

10

other hand, if the task is not owner, it must wait for the
owner to achieve the property. This wait is initiated by a
call to wait for event with the property p as the restart
condition. That is, the calling task will only be restarted on
a memory event if the property p is satisfied in the database,
and hence has been achieved.

inline achieve_lock_property(this,p,err) �
TaskId owner;
find_owner(p,owner);
if
:: owner == this ->

achieve(p,err);
locks[p.name].achieved = true

:: else ->
wait_for_event(this,MEMORY_EVENT,p);

fi
�

Figure 13. achieve lock property

The procedure achieve, Fig. 14, actually achieves the
property by updating the database. If the property p is al-
ready satisfied in the database, the procedure returns suc-
cessfully. Otherwise, a non-deterministic choice is made
between success, modelled by updating the database to
achieve the property, and failure, modelled by setting err
to �����	� . This non-determinism reflects the fact that achieve-
ment can fail, and abstracts away the details about the pos-
sible causes of failure.

inline achieve(p,err) �
if
:: db_query(p)
:: else ->

if
:: db[p.name] = p.value
:: err = 1
fi

fi
�

Figure 14. achieve

Once the task has achieved the property, it is ready to ex-
ecute its real job while assuming that the property is main-
tained; the daemon must intervene and stop the task if this is
not the case. The procedure closure, Fig. 15, represents
the job of the task. Its body is simply a non-deterministic
choice between skip and false. In case skip is exe-
cuted the procedure returns immediately. In case the sec-
ond option is executed, the false statement will make the
calling task block. This blocking simulates a time consum-
ing computation, and is used later to formulate a correctness

condition: in case the property is broken (i.e.: is no longer
in the database), the task will be terminated. If closure
always terminated, this property would be trivially satisfied;
hence the blocking alternative, allows us to verify that the
daemon actively aborts the task.

inline closure() �
if
:: true -> skip
:: true -> false
fi

�

Figure 15. closure

After a task finishes or has been aborted, it no longer
needs to lock the property. Hence, our task must release
the property, meaning that the task must be removed from
the property lock table. This will allow other tasks to
lock the same property name but with different property
values. The releasing is done by a call to the procedure
release lock, Fig. 16. The body of release lock
is embedded within an atomic to model a critical section
in the LISP code. It removes the task from the property
name’s subscriber list in the lock table. If this action causes
the subscriber list to become empty, the lock must be re-
moved completely from the lock table. Removal of the lock
is modelled by assigning the undef value as property
value to the property name in the table.

inline release_lock(this,p) �
atomic �

remove(this,locks[p.name].sub);
if
:: empty(locks[p.name].sub) ->

locks[p.name].value = undef_value
:: nempty(locks[p.name].sub)
fi

�
�

Figure 16. release lock

The top-level procedure execute task, Fig. 17, can
now be defined. When called by a task, this procedure locks
the property p to be maintained, achieves p, executes the
job, and finally releases p again.

The variable err is passed as a result parame-
ter to most of the procedures. This variable is a
local variable of execute task, and is passed as
a parameter to the procedures lock property and
achieve lock property. The calls of these two pro-
cedures are embedded within an unless construct of the
form

11

inline execute_task(this,p)
�
bool err = 0;

�
lock_property(this,p,err);
achieve_lock_property(this,p,err);
closure()

�
unless

� err || active_tasks[this].state == ABORTED � ;
active_tasks[this].state = TERMINATED;

� release_lock(this,p) �
unless

� active_tasks[this].state == ABORTED �
�

Figure 17. execute task

�
lock;achieve;job � unless �

condition � .

where the condition is that either err is ������� , or the
task is aborted: active tasks[this].state ==
ABORTED. As we shall see in the next section, the daemon
aborts a task by assigning ABORTED to the state field in
the tasks status record. Thus, locking, achieving, and job are
performed to the end, unless the condition becomes ������� , in
which case the whole statement terminates.

Once locking, achieving and job have terminated, either
normally or abnormally, the statement:

active_tasks[this].state = TERMINATED;

executes as part of modeling the LISP unwind-protect
construct [12]. The assignment restores the value of the
state field in case the task was aborted by the daemon.
The last statement in execute task releases the property
from the lock table, but is abruptly terminated if the state
field gets assigned the value ABORTED, which occurs if the
daemon discovers a property violation at this point.

The process type Achieving Task used to instanti-
ate tasks is defined in Fig. 18. It assigns the property to
be acheived to the local variable p. In order to reduce the
state space, we focus on property name � and we arbitrarily
let the task achieve a property value which is identical to
this, which is the task’s identity. Finally, the main proce-
dure is called. Note that all tasks in this model perform the
same job (closure). This is an example of an abstraction
from the LISP code, where details regarded as unimportant
for the verification have been omitted.

proctype Achieving_Task(TaskId this)
� Property p;
p.name = 0;
if
:: this == 1 -> p.value = 1;
:: this == 2 -> p.value = 2
fi;
execute_task(this,p);

� ;

Figure 18. Achieving Task

4.5 The Daemon

The daemon is responsible for detecting whether viola-
tions of locks occur in the database. It must react when a
property name ��� in the lock table is bound to a property
value ��� � and the corresponding achieved field is �����	� ,
indicating that an executing task relies on the property, but
in the database ��� denotes a value ��� � and ��� � �� ��� � .
In this case the daemon must abort the tasks relying on
the property ������
���� � and repair the violation by updat-
ing the database so that ��� denotes ��� � again. The pro-
cedure abort task, Fig. 19, aborts a task t by assigning
the value ABORTED to the state field of its status record,
which causes the unless construct in execute task to
terminate the task process (Fig. 17).

inline abort_task(t) �
active_tasks[t].state = ABORTED

�

Figure 19. abort task

The procedure property violated, Fig. 20, deter-
mines whether locks have been violated, assigning �����	� to
the result variable if the property name is locked and has
been achieved, but the database binds the property name to
a different value.

inline property_violated(pn,violation) �
atomic �

violation =
(locks[pn].value != undef_value &
locks[pn].achieved &
db[pn] != locks[pn].value)

�
�

Figure 20. property violated

The procedure property violated is called from

12

the procedure check locks, Fig. 21, which checks the
whole property lock table for violations. The first loop in
check locks aborts the subscribers to property pn if pn
is violated. In the LISP program, the subscribers to the prop-
erty are not automatically aborted, instead they are informed
about the violation, where after they decide whether or not
to abort. If all the subscribing tasks abort, the property does
not need to be recovered. If, on the other hand, some of
the tasks decide not to abort, the broken property has to be
recovered. The second loop in check locks determines
if there are any violations left. A break statement termi-
nates the loop if a violation is found. The result returned in
the variable lock violation will be used in the calling
context to decide whether the database should be recovered.
Since the PROMELA model aborts all subscribing tasks in
the first loop, the second loop should not be needed. How-
ever, an error was found in the model which reflected an
error in the LISP code, so we maintain this feature of the
model in this presentation.

inline check_locks(lock_violation) �
Property_Name pn;
list sub = [NO_TASKS] of � TaskId � ;
TaskId t;
pn = 0;
do
:: pn < NO_PROPS ->

property_violated(pn,lock_violation);
if
:: lock_violation ->

atomic � copy(locks[pn].sub,sub) � ;
do
:: sub?t -> abort_task(t);
:: empty(sub) -> break
od

:: else
fi;
pn++

:: else -> break
od;
pn = 0;
do
:: pn < NO_PROPS ->

property_violated(pn,lock_violation);
if
:: lock_violation -> break
:: else
fi;
pn++

:: else -> break
od

�

Figure 21. check locks

The daemon process is an instance of the process
type Daemon, Fig. 22, which declares three lo-
cal variables: lock violation holds the result of

proctype Daemon(TaskId this) �
bit lock_violation;
byte event_count = 0;
bit first_time = true;
do
:: check_locks(lock_violation);

if
:: lock_violation ->

do_automatic_recovery()
:: else
fi;
if
:: (!first_time &&

Ev[MEMORY_EVENT].count +
Ev[LOCK_EVENT].count != event_count)

->
event_count =

Ev[MEMORY_EVENT].count +
Ev[LOCK_EVENT].count

:: else ->
first_time = false;
wait_for_events(this,

MEMORY_EVENT,LOCK_EVENT)
fi

od
� ;

Figure 22. Daemon

check locks, event count keeps track of new events,
and first time indicates whether the daemon has just
started. The body consists of an infinite loop. On each
iteration, the daemon calls check locks to determine
if there are any violations. If there are violations, it
calls do automatic recovery to repair the database
by making it consistent with the lock table. Next, the dae-
mon decides whether to stop and wait for a new memory
event or lock event, or whether to start a new iteration. An-
other iteration is needed if a memory event or a lock event
has occurred since the last time the daemon was restarted.
If first time is �����	� (initial iteration), the daemon sim-
ply waits for either a MEMORY EVENT or a LOCK EVENT
to occur. The procedure wait for events is similar to
wait for event, Fig. 7, except that it waits for one of
two events and it sets a boolean variable daemon ready
to �����	� just prior to waiting. If first time is false, and
the expression

Ev[MEMORY_EVENT].count +
Ev[LOCK_EVENT].count != event_count

is �����	� , then there has been an event since the last time
event count was updated.

13

4.6 The Environment

A PROMELA model is generally closed, and hence the
environment has to become part of the model. In our case,
violations are introduced by an instance of the process type
Environment, Fig. 23, which runs in parallel with the
tasks and daemon, and may cause a database change at any
moment in time. The environment assigns the value 0 to
property name � , introducing a violation if a lock has been
created for property name � with a value different from � .
It then signals MEMORY EVENT to wake up the daemon, in
case it’s not already running.

proctype Environment()
� atomic �

db[0] = 0;
signal_event(MEMORY_EVENT)

�
� ;

Figure 23. Environment

4.7 Initialization

#define spawn(task,t)
atomic �
active_tasks[t].state = RUNNING;
run task(t)

�

Figure 24. spawn

All processes are instantiated with the procedure
spawn, which takes as parameters the parameterizedtask
(a proctype) to be spawned and the identity t (type
TaskId) of the task to be spawned. The system is ini-
tialized by spawning the daemon, the two tasks, and the en-
vironment, Fig. 25. Before the tasks are spawned, the dae-
mon must terminate its own local initialization, modelled by
waiting for the variable daemon ready to become ������� .
In an early model, the tasks were spawned without waiting
for the daemon, but that led to an error which was discov-
ered by the model checker, as explained in Section 5.7.

5 Analysis wrt. Selected Properties

5.1 Identifying Properties to be Verified

The model has been analyzed with respect to the follow-
ing two properties:

init
�
spawn(Daemon,0);
daemon_ready == true;

spawn(Achieving_Task,1);
spawn(Achieving_Task,2);
run Environment()

�

Figure 25. initialization

RELEASE Property: A task releases all of its locks before it
terminates.

ABORT Property: If an inconsistency occurs between the
database and an entry in the lock table, then all tasks that
rely on the lock will be terminated, either by themselves or
by the daemon.

In the following we demonstrate how we formulated
these properties in terms of PROMELA assertions and LTL

formulae, and we show the results of applying the SPIN

model checker to verify these properties. It turned out that
none of the properties were satisfied in the presented model,
and that the model was accurate in the sense that all of these
errors also existed in the LISP code. Their discovery led the
RA programmers to make appropriate code modifications,
hence improving the code quality. When we discuss fixes
to some of these errors, they apply to the PROMELA model,
but in most cases similar fixes were also made to the LISP

code .

The attempted verification of the two properties led to
the direct discovery of four programming errors – one
breaking the RELEASE property, and three breaking the
ABORT property. All of these errors are classical concur-
rency errors in the sense that they arise due to processes
interleaving in unexpected ways. For example, two errors
can be corrected by introducing additional critical sections.
Furthermore, a less serious efficiency error (code execut-
ing twice instead of once) was discovered by examining
traces generated during model checking. Hence, a total of
five errors were identified in the LISP code, four of which
were considered important. Additionally, the analysis high-
lighted the need for a mechanism to insure that the daemon
reaches “steady state” before proceeding.

5.2 Error � – The RELEASE Property

In order to formalize the first property, we need to define
what it means for a task to have released its locks. The
function not subscriber in Fig. 26 returns ������� if task

14

t does not subscribe to property name pn and hence has
released it’s lock on pn.

#define not_subscriber(this,pn)
!locks[pn].sub??[eval(this)]

Figure 26. RELEASE predicate

To state the RELEASE property, we modify the defini-
tion of the process Achieving Task, Fig. 18, adding
an assert–statement after the call of execute task, as
shown in Fig. 27. When a task terminates, it must no longer
subscribe to the property name that it locked.

proctype Achieving_Task(TaskId this)
� Property p;
p.name = 0;
if
:: this == 1 -> p.value = 1;
:: this == 2 -> p.value = 2
fi;
execute_task(this,p);
assert(not_subscriber(this,p.name))

� ;

Figure 27. Formalization of RELEASE property

Running the SPIN model checker on the modified pro-
gram yields an error trace illustrating that the assertion is
not always satisfied. The (shortened) trace describes the
following sequence of events:

1. A task starts, running process Achieving Task
in Fig. 27. This implies a call of the procedure
execute task, defined in Fig. 17.

2. The procedure execute task does the locking, the
achieving, and the closure call. It then changes its state
to TERMINATED and is ready to release its lock (call
the release lock procedure).

3. At this point, the Environment, Fig. 23, introduces
an inconsistency in the database.

4. The Daemon, Fig. 22, detects this inconsistency and
aborts the task in the check locks procedure, Fig.
21, by calling the procedure abort task defined
in Fig. 19. That is, the status of the task becomes
ABORTED.

The execute task procedure (Fig. 17) exits when
the state becomes ABORTED, skipping release lock.

Hence, even though the locking, achieving, and closure
are protected against aborts, the lock releasing itself is not.
This model reflects how the corresponding LISP construct
in the real system: “(unwind-protect E1 E2)” ex-
ecutes E1 and then E2 (the lock releasing), with the ad-
dition that if an abort occurs during the execution of E1,
the remainder of E1 is skipped, and E2 gets executed. The
unexpected situation is that an abort can occur during the
execution of E2, with the result that the rest of E2 will not
be executed.

Normally this semantics is sufficient for sequential pro-
grams where an abort typically is thrown only within E1,
something that can be verified by code inspection. How-
ever, in a concurrent setting as here, such an abort can
be thrown from a parallel process at any time, hence also
during the execution of E2. Admittedly this error could
have been detected by code inspection when the PROMELA

model was created. However, the properties to be verified
had not yet been formulated at that point in time, so the
problem was therefore not in our focus.

The programmer’s response was: “I think this is a real
error. It would only arise if a task gets a timer interrupt in
between exiting the body of the unwind-protect and entering
the critical section of the release-locks, but I don’t know of
any reason why that should not happen on occasion. This is
a particularly pernicious bug. It arises only because you are
in a multi-threaded environment, and only in very obscure
circumstances that are very unlikely to arise during testing.
Congratulations! You have just converted me into a believer
in formal methods”.

The error can be corrected by protecting the lock releas-
ing from being aborted. This was done in a modified ver-
sion of the PROMELA model by removing the unless con-
struct attached to the call of release lock. Thereafter,
the model was verified to satisfy the RELEASE property us-
ing SPIN. However, since our correction was not easily im-
plementable in LISP, we continued with the original model.
The remaining verification results are based on a model still
containing this error, but this does not effect their validity.

5.3 Error � – The ABORT Property

As already mentioned, we attempted to verify this prop-
erty three times, each time demonstrating an error in the
model. We present the first attempt in this section.

Focusing on task 1, we stated that, if task 1 has locked
and achieved property name 0 to denote property value 1
in the database (as in Fig. 18) and the environment breaks
this property, then task 1 will be terminated. The two pred-
icates in Fig. 28 formally define what it means for task 1’s
property to be broken and for task 1 to be terminated.

15

#define task1_property_broken
(locks[0].value == 1 &
locks[0].achieved &
db[0] == 0)

#define task1_terminated
(active_tasks[1].state == TERMINATED ||
active_tasks[1].state == ABORTED)

Figure 28. ABORT predicates

These definitions allow the ABORT property to be stated
as the LTL formula in Fig. 29. The formula asserts that
“in all states, if task1 property broken holds, then
eventually task1 terminated will hold”.

[](task1_property_broken -> <>task1_terminated)

Figure 29. Formalization of ABORT property

This property is only interesting if task 1 may fail to ter-
minate if it is not aborted. The closure in Fig. 15 is de-
fined to provide this capability. It can arbitrarily choose the
true -> false branch causing it to hang on the false
expression. Of course, in the real LISP program a task will
generally terminate. We are therefore really interested in
the task being terminated within a certain time frame. How-
ever, since PROMELA cannot deal explicitly with time, we
focus only on the distinction between termination and non-
termination.

Applying the SPIN model checker to the above property
yields an error trace demonstrating, that the property is not
satisfied in the model. The trace illustrates the following
sequence of events:

1. The daemon, Fig. 22, starts and eventually calls
wait for events.

2. A task, Fig. 18, starts, locks and achieves successfully.
It then signals LOCK EVENT from lock property
(Fig. 11) and begins executing its closure. This closure
chooses the true -> false branch.

3. The daemon is awakened, but discovers no inconsis-
tencies, so it decides to wait again. The decision to
wait occurs at the last else branch in Fig. 22. How-
ever, the call to wait for events does not happen
immediately.

4. The environment, Fig. 23, introduces an inconsistency,
and signals the MEMORY EVENT. However, this signal
does not affect the daemon since it has already checked
the counter and decided to call wait for events.

5. The daemon now calls wait for events. Hence,
the task is not aborted, but continues its “big” compu-
tation.

The programmer’s comment about this error was: “This
[bug] is an instance of a classic pattern: not wrapping a
conditional wait-for-events inside a critical section. This
sort of mistake is very easy to make and happens all the
time in our code. Thanks for catching this one!” In fact,
this code pattern, which reoccurred in a different part of the
code, did cause a deadlock in flight, as explained at the end
of the paper.

A solution to the problem illustrated above is to embed
the decision to wait and the actual waiting into a critical sec-
tion that cannot be interrupted by other processes. Fig. 30
shows the Daemon, extended with such a critical section.

proctype Daemon(TaskId this) �
...

atomic � -- added
if
:: (!first_time &&

Ev[MEMORY_EVENT].count +
Ev[LOCK_EVENT].count != event_count)

->
event_count =

Ev[MEMORY_EVENT].count +
Ev[LOCK_EVENT].count

:: else ->
first_time = false;
wait_for_events(this,

MEMORY_EVENT,LOCK_EVENT)
fi

�
...

� ;

Figure 30. New Daemon

5.4 Error � – The ABORT Property

In the attempt to verify the ABORT property in the cor-
rected model, SPIN yields an error trace demonstrating that
the property is still not satisfied. The trace illustrates the
following sequence of events:

1. The daemon, Fig. 30, starts and eventually calls
wait for events.

2. A task, Fig. 18, starts, locks and achieves successfully.
It then signals LOCK EVENT from lock property
(Fig. 11) and starts executing its closure. This closure
chooses the true -> false branch.

16

3. The daemon is awakened and calls check locks,
Fig. 21. The daemon executes the first loop of
check locks, finds no violation, and is ready to ex-
ecute the second loop.

4. The environment, Fig. 23, introduces an inconsistency,
and signals the MEMORY EVENT. However, the dae-
mon is already running, so the only effect is that the
MEMORY EVENT counter is incremented.

5. The daemon now executes the second loop of
check locks, and finds the violation. Hence, it calls
do automatic recovery, which repairs the vio-
lation.

6. Finally, because the counter for MEMORY EVENT
was incremented in Step 4, the daemon executes
check locks again, but does not find anything
wrong. It therefore calls wait for events without
aborting the task.

The programmer’s comment about this error was as fol-
lows: “Ah, good point! I had neglected to consider the
case where a new assertion that violates a lock happens in
the middle of check-locks. It’s hard to get out of a single-
threaded mind set! Thanks for pointing this out ... the intent
was that tasks would be notified whenever a locked prop-
erty was violated after initial achievement. In some cases
this can be important ... even if the constraint is automati-
cally restored”.

At the time this error trace was discovered, we believed
that it was an intended behavior due to an initial hesitation
by the programmer to classify it as an error. Only later was
it confirmed to be unexpected and undesired. Hence, we did
not correct it.

5.5 Error � – The ABORT Property

Since we originally did not regard the above situation as
an error, we continued the verification as if it was a correct
behavior. We reformulated the ABORT property to assert
that when a property is broken, either it is repaired, or the
task is terminated. This correctness criteria allows proper-
ties to oscillate, thereby “repairing” themselves without the
daemon discovering the temporary deviation. This behavior
is possible in the real system and is regarded as acceptable.

Hence, we introduce the predicate in Fig. 31, which re-
turns �����	� if the database and the lock table match with re-
spect to property name 0.

The new correctness property using this new pred-
icate is shown in Fig. 32. The property states
that “in all states, if task1 property broken

#define task1_property_repaired
locks[0].value == db[0]

Figure 31. ABORT predicate

[](task1_property_broken ->
<>(task1_terminated ||

task1_property_repaired))

Figure 32. Re-formalization of ABORT property

holds, then eventually either task1 terminated or
task1 property repaired will hold”.

Applying the SPIN model checker to the above property
yields an error trace demonstrating that the property is not
satisfied in the model. The trace illustrates the following
sequence of events:

1. Task 1, Fig. 18, starts, and eventually calls
achieve lock property, Fig. 13. It executes the
call to achieve, and is delayed prior to executing the
assignment to the achieved field.

2. At this point, the Environment, Fig. 23, introduces
an inconsistency in the database.

3. The daemon, Fig. 30, is awakened by the environment
change, but does not discover the inconsistency since
the task has not yet set the achieve field. Hence, the
daemon goes back to sleep.

4. The task now assigns �����	� to the achieved field, and
continues as if everything was consistent.

The programmer’s comment about this error was as fol-
lows: “Ah, good point. You are correct, this is a bug.
I’m impressed! This makes two bugs you guys have dis-
covered through formal methods that we almost certainly
would never have caught any other way.”

A solution to the problem is to place the two lines of
code in the achieve lock property procedure into
a critical section, such that updating the database and the
achieved field is always done in one indivisible action,
as shown in Fig. 33. The SPIN model checker certified that
the ABORT property in Fig. 32 was satisfied in this new
model.

17

inline achieve_lock_property(this,p,err) �
TaskId owner;
find_owner(p,owner);
if
:: owner == this ->

atomic � -- added
achieve(p,err);
locks[p.name].achieved = true

�
:: else ->

wait_for_event(this,MEMORY_EVENT,p);
fi

�

Figure 33. New achieve lock property

5.6 Error � – An Efficiency Problem

A design flaw was discovered in the LISP code during
inspection of the error traces generated during the verifica-
tions above. The procedure check locks is called twice
whenever the daemon returns from wait for events.
That is, when an event is signaled by a call to
signal event, Fig. 8, the event counter for that
event is incremented and the waiting tasks are restarted.
Thus, after the first call to check locks (and perhaps
do automatic recovery), the test:

Ev[MEMORY_EVENT].count +
Ev[LOCK_EVENT].count != event_count

evaluates to �����	� , and hence another iteration of the loop
is begun, re-executing check locks. The programmer’s
comment about this error was as follows: “It’s a bug, but
since it’s just an efficiency problem it’s pretty low priority”.

5.7 “Daemon–Ready” Flag Required

In an early model, the tasks were spawned without wait-
ing for the daemon to initialize itself. That led to the dis-
covery of an error by the model checker. A lock viola-
tion could occur before the daemon got to its initial wait-
ing point, and hence the daemon would ignore the viola-
tion and call wait for events. This situation was not
considered an error in the LISP program since the daemon
should always start before everything else. However, the
programmer emphasized that this highlighted the need for
a mechanism to insure all daemons have reached “steady
state” before proceeding.

5.8 Statistical Information

The model was verified exhaustively using SPIN’s partial
order reduction algorithm and state compression. Fig. 34
shows the data for the different verifications. For each of
the first four errors, we indicate what kind of property was
verified, assertion (A) or LTL formula; the number of states
explored by SPIN; the memory consumption in Mb; and
finally the time to locate the error.

The last two rows show data for the corrected models.
After error 1 was corrected, the model was verified to be
correct with respect to the assertions. After error 4 was cor-
rected, the model was verified correct with respect to the
LTL formulae. The LTL formulae were verified in a model
where assertion error 1 had not been corrected.

Error Kind States Memory Time
(Mb) (sec)

1 A 2963 2.582 0.3
2 LTL 49038 3.708 5.3
3 LTL 45705 3.606 4.9
4 LTL 48858 3.708 5.4
1

�

A 222840 7.088 21.2
4

�

LTL 107479 5.040 11.6

Figure 34. Verification data

6 Discussion

In general we regard the effort as being a very success-
ful application of SPIN. Five errors were identified in the
PROMELA model within a week of its creation; the pro-
grammer confirmed that each represented an error in the
LISP code. In other words, the errors found were real, and
not only errors in the model. The errors were all classi-
cal concurrency errors, where unforeseen interleavings be-
tween processes caused undesired events to happen. Ac-
cording to the RA programming team, the effort has had a
major impact, locating errors that would probably not have
been located otherwise, and identifying a major design flaw.

6.1 Analysis of the Effort

The modeling effort, obtaining a PROMELA program
from the LISP program, took about 12 man weeks during
6 calendar weeks. The verification effort was small in con-
trast, taking about one week. Once the model was formu-
lated the properties to be verified were easily formulated in

18

terms of assertions or LTL formulae. The model checker
found the 5 errors right away.

The modeling effort consisted of two sub-activities: ab-
straction and translation. While these two activities can be
separated, in practice, we performed abstraction as we were
translating the system. By abstraction we mean the activ-
ity of reducing the original LISP program to a finite state
system, which is small enough for efficient verification, but
accurate enough to contain potentially important errors. In
this case, our focus was on the tasks, the daemon, and their
operations on the lock table, and whether these operations
were safe. Hence, though we did not know the properties to
be verified, we had some gross guidelines of what to elim-
inate: everything not crucial for the operations on the lock
table. We therefore performed a form of slicing with re-
spect to the lock table data structure. As an example, in the
model we have completely ignored the goal specific con-
tents of the individual tasks, such as details of operating the
camera. Also, we consider only two tasks and two proper-
ties, while in the real system, several tasks and properties
are allowed.

An ideal abstraction is sound and complete with respect
to the properties being verified. By a sound abstraction we
mean that if an error is present in the abstract program it
is also present in the concrete program. By a complete ab-
straction we mean the dual: if an error is present in the
program then it is present in the abstraction. In our case,
the abstraction was sound with respect to the two proper-
ties being verified since all 5 errors found in the abstrac-
tion were also present in the concrete program. However,
the abstraction may not be sound with respect to properties
that we have not analyzed. Furthermore, the abstraction is
most likely not complete. There may still be errors in the
program that we have not caught. No formal attempt was
made to show soundness and completeness. Abstractions
were based more on intuition than on formal reasoning. In-
terestingly enough, this informal abstraction activity was
regarded as easy. Once a piece of code was understood,
deciding what to keep and what to remove was often quite
clear.

By translation we mean the activity of writing the ac-
tual PROMELA code, based on the now abstracted LISP pro-
gram. For example an if-statement in LISP was mapped into
and if-statement in PROMELA and LISP lists were mapped
into arrays or channel buffers. Generally, for each LISP con-
struct, we identified a set of PROMELA constructs which,
when put together, would have an equivalent semantics and
would keep the state space as small as possible.

The translation phase was non-trivial. It was the most
time consuming activity due to the strength of the LISP lan-
guage compared to the weaker PROMELA language. This
work motivated the introduction of inline procedures and
nested atomic statements in SPIN.

6.2 Some Citations from the Programmer

We asked the programmer three questions regarding the
impact of our work on the development of the system. His
answers are cited below. We found the responses interesting
due to the difficulty that is often encountered when integrat-
ing formal methods into software practice. This informa-
tion is primarily anecdotal, but it gives some idea of the
programmer’s perception of our work.

Question Did our work have any impact on your work?
Answer: “You’ve found a number of bugs that I am fairly
confident would not have been found otherwise. One of the
bugs revealed a major design flaw (which has not been re-
solved yet). So I’d say you have had a substantial impact. If
nothing else you have helped us improve the quality of our
product well beyond what we otherwise would have pro-
duced”.

Question How serious were the errors we found? Any ex-
amples of what could have gone wrong? Would they only
occur rarely or be harmless?
Answer: “The errors you found were the sort that would
manifest themselves only under very particular sets of cir-
cumstances involving precise timing, so these errors rarely
manifest themselves. This makes them both more and less
serious – less serious because they are unlikely to actually
occur, more serious because if they occur at all they are
likely to occur for the first time under actual flight condi-
tions. The overall architecture is designed to be robust in
the face of such errors (we have multiple layers of software
redundancy) so it is unlikely that these errors would have
caused problems more serious than lost time, but one never
knows. Every bug is potentially a mission-killer, and gener-
ally the ones that do kill the mission do so in ways that one
never imagines until it happens”.

Question What was/is your general attitude towards formal
methods, before and after this exercise?
Answer: “I used to be very skeptical of the utility of formal
methods. This is at least partly due to the fact that I had
a misconception about the way in which formal methods
would be used. I thought that formal-methods advocates
wanted to “prove correctness” of software systems. I be-
lieved (and still believe) that that is impossible. However,
what you have been doing is finding places where software
violates design assumptions, which is not the same thing as
proving correctness. To me you have demonstrated the util-
ity of this approach beyond any question. I would like very
much to learn more about your work”.

6.3 Follow Up Work

As described above, the modeling activity can be re-
garded as consisting of abstraction and translation. The

19

translation phase could have been fully automated. More-
over, in our opinion, the abstraction phase could have been
semi-automated to an extent where a programmer could
have abstracted the program to a form suitable for model
checking in less than one day.

These findings have led to two corresponding research
activities in the Automated Software Engineering group at
NASA Ames: an abstraction workbench and a translation
workbench. The general focus for our work is to provide
tools that can find complex interleaving errors in programs
rather than prove them totally correct. Our focus is on pro-
grams written in mainstream programming languages, such
as JAVA. We hope that this focus will provide a useful syn-
ergy between technology providers and technology users.

Some abstractions can be done fully automatically, such
as program slicing. More sophisticated approaches to ab-
straction are based on theorem proving: a theorem prover is
used to formulate abstractions and prove them correct (e.g.,
[7]). Some work tries to automate these more sophisticated
abstractions [1, 2, 5]. Also interesting is the effort to inte-
grate model checking into the PVS theorem prover [10]. In
general we imagine an interactive abstraction environment
which would allow unsound and incomplete abstractions, as
well as sound and complete ones.

We have developed a translator from a subset of the
JAVA programming language to PROMELA [6, 8]. Simi-
lar work, described in [4], also translates JAVA programs
into PROMELA, but does not handle exceptions or poly-
morphism. Finally, [3] describes a translation of JAVA to a
transition model, using static pointer analysis to aid virtual
coarsening and reduce the size of the model.

6.4 Aftermath - The Remote Agent Anomaly

On May 18, 1999, The Remote Agent was running in
space on board the DEEP-SPACE 1 space craft, when an
anomaly occurred: thrusting did not turn off as requested.
The Remote Agent experiment was immediately terminated
from ground, and the space craft put in stand-by mode. The
experiment was continued only after the error was under-
stood. The anomaly was caused by a piece of code with
the exact same pattern that caused error number 2 from sec-
tion 5.3: a missing critical section around a conditional wait
statement allowed an event to arrive between the evlauation
of the condition and the wait. Thus, the thread executing the
wait missed the event and the system was caught in a dead-
lock. The flawed code was part of a module not analyzed
using SPIN.

Acknowledgments

We would like to thank Erann Gat, the lead developer of
ESL, for his useful responses to our error reports, and for the

comments above. We also thank Ron Keesing and Barney
Pell for explaining parts of the Executive and suggesting
properties to be verified. Finally, but certainly not least, we
want to thank SPIN’s designer, Gerard Holzmann, for his
always reliable support during the work.

References

[1] S. Bensalem, Y. Lakhnech, and S. Owre. Computing Ab-
stractions of Infinite State Systems Compositionally and Au-
tomatically. In CAV’98: Computer-Aided Verification, num-
ber 1427 in Lecture Notes in Computer Science. Springer-
Verlag, 1998.

[2] S. Bensalem, Y. Lakhnech, and S. Owre. InVeSt: A Tool
for the Verification of Invariants. In CAV’98: Computer-
Aided Verification, number 1427 in Lecture Notes in Com-
puter Science. Springer-Verlag, 1998.

[3] J. C. Corbett. Constructing Compact Models of Concurrent
Java Programs. In Proceedings of the ACM Sigsoft Sympo-
sium on Software Testing and Analysis, March 1998. Clear-
water Beach, Florida.

[4] C. Demartini, R. Iosif, and R. Sisto. Modeling and Vali-
dation of Java Multithreading Applications using SPIN. In
Proceedings of the 4th SPIN Workshop, November 1998.
Paris, France.

[5] S. Graf and H. Saidi. Construction of Abstract State Graphs
with PVS. In CAV’97: Computer-Aided Verification, num-
ber 1254 in Lecture Notes in Computer Science. Springer-
Verlag, 1997.

[6] K. Havelund and T. Pressburger. Model Checking Java Pro-
grams using Java PathFinder. International Journal on Soft-
ware Tools for Technology Transfer (STTT), 2(4):366–381,
April 2000. Special issue of STTT containing selected sub-
missions to the 4th SPIN workshop, Paris, France, 1998.

[7] K. Havelund and N. Shankar. Experiments in Theorem Prov-
ing and Model Checking for Protocol Verification. In M.-
C. Gaudel and J. Woodcock, editors, FME’96: Industrial
Benefit and Advances in Formal Methods, number 1051 in
Lecture Notes in Computer Science. Springer-Verlag, 1996.
Oxford, England.

[8] K. Havelund and J. Skakkebæk. Applying Model Check-
ing in Java Verification. In D. Dams, R. Gerth, S. Leue,
and M. Massink, editors, Theoretical and Practical Aspects
of SPIN Model Checking – 5th and 6th International SPIN
Workshops, number 1680 in Lecture Notes in Computer Sci-
ence. Springer-Verlag, July and September 1999. Trento,
Italy – Toulouse, France (presented at the 6th Workshop).

[9] G. Holzmann. The Design and Validation of Computer Pro-
tocols. Prentice Hall, 1991.

[10] S. Owre, S. Rajan, J. Rushby, N. Shankar, and M. Srivas.
PVS: Combining Specification, Proof Checking, and Model
Checking. In R. Alur and T. A. Henzinger, editors, CAV’96:
Computer-Aided Verification, number 1102 in Lecture Notes
in Computer Science. Springer-Verlag, July/August 1996.

[11] B. Pell, E. Gat, R. Keesing, N. Muscettola, and B. Smith.
Plan Execution for Autonomous Spacecrafts. In Proceed-
ings of the International Joint Conference on Artificial In-
telligence, August 1997. Nagoya, Japan.

20

[12] G. L. Steele. Common LISP – The Language. Digital Press,
1990. Second edition. The unwind-protect construct is
described on page 188.

21

